Using quantitative methods for semantic maps

William Croft
University of New Mexico
wcroft@unm.edu
Visualization and explanation
What is the semantic map model?

- It is a tool for visualizing similarity relations between discrete entities.
- “Similarity” is defined as: concepts expressed by the same form in one or more languages (co-expression; Hartmann et al. 2014).
- This is not the only type of similarity that can be measured by this visualization technique.
- But it happens to be the type of similarity that typologists have used the model for.
Not just grammatical co-expression

- The “semantic map” model is a model of similarity of any kind, including any kind of co-expression
- It doesn’t have to be co-expression of grammatical elements
- It could be co-expression of lexical elements
Co-expression and explanation

• Co-expression—similarity defined as two concepts expressed by the same form in at least one language—is a typological generalization (cf. Haiman 1978)

• But many of us would also like an explanation for co-expression patterns (although some typologists take a nominalist position)
Co-expression and explanation

- Examples of explanations:
 - conceptual similarity ("mental maps", "conceptual space", etc.) of different kinds
 - diachronic spread (and contraction) of use
 - phonetic convergence of diachronically unrelated forms ("homonymy")

- These are not mutually exclusive

- In some cases, their interaction accounts for "anomalies"
The “doughnut”

Two-participant events

Indirect Middle

Indirect Reflexive

Logophoric Reflexive

DIRECT REFLEXIVE

sik

Logophoric Middle

Passive Middle

Emotion Middle

Cognition Middle

Spontaneous Action or Process

Passive

Natural Reciprocal

Reciprocal hvárr annan

Grooming

Nontranslational Motion

Change in Body Posture

Translational Motion

One-participant events

(Kemmer 1993:120, 226)
A terminological issue

• I use the term *conceptual space* for the underlying graph, and *semantic map* for language-specific categories mapped onto the space.

• It is important to distinguish between *comparative concepts*, like the conceptual space, and *language-specific categories*, like the semantic maps (Haspelmath 2010, Croft 2014, inter alia).
Signal and “noise”

• Homonymy introduces “noise” into the conceptual space interpreted as a space of conceptual similarity

• In a different way, diachronic layering of forms like the two Old Norse middle markers also introduces “noise” in the sense that new forms intruding into a conceptual space “break up” similarity networks

• Ideally we would integrate all three explanations, but given a set of synchronic data, we lack the relevant diachronic information
Automated algorithms, 1: MDS and Euclidean models
Multidimensional scaling in analyzing linguistic behavior

- Linguistic distributional data is similar to voting data: meanings “vote” Y or N on whether they can be expressed by a linguistic form

<table>
<thead>
<tr>
<th>Romanian:</th>
<th>va-</th>
<th>vre- -un</th>
<th>ori-</th>
<th>ni-</th>
<th>älde-</th>
<th>bir</th>
<th>bolsa da</th>
<th>eš</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific known</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Specific unknown</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Irrealis nonspecific</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Question</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Conditional</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Comparative</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Free choice</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Indirect negation</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Direct negation</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>
A spatial model of conceptual similarity among indefinite pronouns

a single situation type (indefinite pronoun semantic type)
Romanian indefinite pronouns in an MDS spatial model—the wrong way
Conceptual spaces and semantic maps

• In a Euclidean model, the language-specific categories are bisections of the space (cutting lines)

• It is not correct to draw any shape around points/concepts to depict a language-specific category, unlike the “classical” graph structure model
Romanian indefinite pronouns in an MDS spatial model—the right way

cutting lines must be straight (a Euclidean spatial model)
to qualify. Beyond that, they extend to the left or up and down to
is partly because they had to include saturated "strong" reciprocity
that they partition the clip space in similar ways; to the extent that
from unrelated languages will be grouped together to the extent
the languages similar or dissimilar to one another? Constructions
Another way to see the similarity of the constructions to one
Semantic similarity of constructions
Majid et al. The grammar of exchange

FIGURE 7 | Extensional range for general reciprocal constructions in Jahai (top left), Savosavo (top right), English (bottom left) and Khoekhoe (bottom right).

Majid et al. 2011, Frontiers in Psychology
Instead of drawing boundary lines precisely around all points that are coded by a particular coding element, the lines here represent probabilistic indications of the regions in which particular elements predominate. This also explains why there are various coding elements to be found within the 'wrong' lines, for example, some triangles in the area of patient-like coding. To be precise, the lines represent three different probability distributions (one for each construction) in two-dimensional space, indicating which parts of the figure are more likely to be coded by each element. To show these three probability distributions in one figure we have only drawn lines indicating the probability of 35% (with two thinner lines indicating 32% and 29%, just to visually indicate the gradient nature of these lines). For all lines to be comparable, these probabilities are kept constant throughout all figures in this paper. To infer the probabilities we made use of kriging, a geostatistical method to interpolate distributions in space.11 In our case, we interpreted the points of Figure 3 as points in space. Then, each point was given a height of one when a specific coding element was present, and a height of zero when a different coding element was attested. Missing data for individual roles was ignored (this can be seen in the grey circles of the base map that are not accompanied by a black circle, triangle, or square). This distribution of high (one) and low (zero) points was then interpolated as 'hills' in space, and the lines were drawn at a height of 0.35, 0.32, and 0.29. In Appendix 2 all of the different distributions of the coding devices from all 25 languages are shown. Because

Figure 4. Distribution of the three coding elements in Zenzontepec Chatino
Semantic maps are cutting lines

• A semantic map is a cutting line
• Hence, if one can position the meanings so that a straight cutting line includes all and only the meanings the form stands for*, then the conceptual space is universal
• A conceptual space is only interesting if it is low-dimensional (adding dimensions weakens the constraints on possible cutting lines)

*given the presence of noise, i.e. up to a high *goodness of fit*
Comparing MDS and semantic maps

- Links represent graph structure of conceptual space.
- Distance maps well onto links except the conceptual space is "curved" in the spatial model.
- Also, indirect negation is too "close" to points it should be farther from.
Comparing MDS and semantic maps

cutting lines must be straight (a Euclidean spatial model)

but some cutting lines cut in the “middle” of the sort-of hierarchy

straight cutting lines in the middle mean the space must be curved

the “ends”, spec.know and free.ch, are never grouped under a cutting line
Since all semantic maps include the leftmost end of the Animacy Hierarchy, the Hierarchy can be represented in one dimension.
Semantic maps and MDS: a curvilinear model

NP Accessibility Hierarchy: Keenan and Comrie argue that a relative clause construction covers a continuous segment of the Accessibility Hierarchy
Since cutting lines must be straight, the Hierarchy must be represented as curved in an MDS spatial model.
Spatial adpositions

• A set of pictures of spatial situations was constructed to represent situations commonly expressed by English on and in

• The situations were described by speakers of nine diverse languages (Tiriyó, Trumai, Yukatek, Basque, Dutch, Lao, Ewe, Lavukaleve and Yélîdnye)

• Spatial adpositions only were coded

• An MDS analysis was performed on the data (refined by Croft & Poole)

(Levinson et al., Language vol. 79, 2003)
Sample stimuli (Bowerman-Pederson)
Raw data for spatial adpositions: Tiriyó, pictures 11-16

<table>
<thead>
<tr>
<th></th>
<th>tao</th>
<th>awë</th>
<th>hkao</th>
<th>juuwë</th>
<th>po</th>
<th>rehte</th>
<th>epoe</th>
<th>epine</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Data is very lopsided; most adpositions are used for only one or a few pictures
Spatial adpositions by dissimilarity

• Levinson et al. (2003) used a dissimilarity algorithm to analyze the spatial adposition data

• A dissimilarity algorithm cannot use raw crosslinguistic distributional data

• Instead, one must construct a matrix of (dis)similarity, i.e. for each pair of situation types, how often they are/aren’t expressed by the same forms
Dissimilarity matrix for adposition data, pictures 1-9

<table>
<thead>
<tr>
<th>Pictures</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>8.890</td>
<td>8.610</td>
<td>9.000</td>
<td>8.590</td>
<td>8.890</td>
<td>8.740</td>
<td>8.330</td>
<td>8.890</td>
</tr>
<tr>
<td>2</td>
<td>8.890</td>
<td>0.000</td>
<td>8.680</td>
<td>8.860</td>
<td>8.750</td>
<td>8.810</td>
<td>8.750</td>
<td>8.750</td>
<td>8.830</td>
</tr>
<tr>
<td>3</td>
<td>8.610</td>
<td>8.680</td>
<td>0.000</td>
<td>8.720</td>
<td>8.680</td>
<td>8.810</td>
<td>8.540</td>
<td>8.470</td>
<td>8.740</td>
</tr>
<tr>
<td>4</td>
<td>9.000</td>
<td>8.860</td>
<td>8.720</td>
<td>0.000</td>
<td>8.860</td>
<td>8.920</td>
<td>8.720</td>
<td>8.860</td>
<td>8.790</td>
</tr>
<tr>
<td>5</td>
<td>8.590</td>
<td>8.750</td>
<td>8.680</td>
<td>8.860</td>
<td>0.000</td>
<td>8.710</td>
<td>8.600</td>
<td>8.450</td>
<td>8.730</td>
</tr>
<tr>
<td>6</td>
<td>8.890</td>
<td>8.810</td>
<td>8.810</td>
<td>8.920</td>
<td>8.710</td>
<td>0.000</td>
<td>8.740</td>
<td>8.810</td>
<td>8.790</td>
</tr>
<tr>
<td>7</td>
<td>8.740</td>
<td>8.750</td>
<td>8.540</td>
<td>8.720</td>
<td>8.600</td>
<td>8.740</td>
<td>0.000</td>
<td>8.600</td>
<td>8.640</td>
</tr>
<tr>
<td>8</td>
<td>8.330</td>
<td>8.750</td>
<td>8.470</td>
<td>8.860</td>
<td>8.450</td>
<td>8.810</td>
<td>8.600</td>
<td>0.000</td>
<td>8.830</td>
</tr>
<tr>
<td>9</td>
<td>8.890</td>
<td>8.830</td>
<td>8.740</td>
<td>8.790</td>
<td>8.730</td>
<td>8.790</td>
<td>8.640</td>
<td>8.830</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Two-dimensional MDS model of adpositions by dissimilarity

But many situation types are scattered in the space

Some semantically coherent clusters appear
Unfolding algorithm

- The unfolding algorithm (Poole 2000, 2005) takes the distribution data directly.
- It can therefore handle lopsided data better than the dissimilarity algorithm (dissimilarity compresses the range).
- The result of applying unfolding to the adposition data are much more coherent semantic clusters.
Spatial adpositions: Goodness of fit

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Classification</th>
<th>APRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94.1%</td>
<td>0.300</td>
</tr>
<tr>
<td>2</td>
<td>95.8%</td>
<td>0.501</td>
</tr>
<tr>
<td>3</td>
<td>97.1%</td>
<td>0.661</td>
</tr>
</tbody>
</table>

Fitness statistics indicate a two dimensional model is best.
Two dimensional MDS model of adpositions by unfolding

The ON/OVER and ON-TOP clusters are now grouped together; all manifest superadjacency.

Most of the other scattered situation types expressed containment, and are now in the IN cluster.

Most of the scattered situation types expressed attachment, and are now in the ATTACHMENT cluster.
Conceptual categories (clusters)

• Does the crosslinguistic MDS analysis reveal linguistically relevant universal conceptual categories?

• What is universal are the individual situation types and their conceptual relations to each other

• That is, it is the dimensions of the spatial model that describe the linguistically relevant semantic properties
All adposition categories
Language universal and language-specific

Universal: each situation type (picture), holistically conceived

Universal: exact position of each situation type relative to the others

Language-specific: an adposition category (cutting line)

Language categories cut through conceptual “categories” (clusters)
The importance of relations between situation types

These pictures are almost all of surface attachment—between ON and ATTACHMENT

These pictures are almost all of semi-contained attachment—between ATTACHMENT and IN
Somewhat closer to IN, the figure is partly contained in the ground, which has an opening, not a hole.

Closer to ATTACHMENT, the figure is or creates a hole in the ground, but can extend beyond the ground.
The IN “cluster”: A closer look

There is a gradient of increasing envelopment of the figure by the ground, NOT a set of discrete conceptual categories
The ON (TOP) “cluster”: A closer look

There is a less clear gradient of a smaller figure closer to contact on the top of a flatter ground supporting it; again, NOT a set of discrete conceptual categories
Beyond co-expression
Not just conceptual similarity

• Recall that the “semantic map” model is a model of similarity of any kind

• It doesn’t have to be co-expression of meanings by a form

• For example, it could be similarity of the form of constructions in terms of certain structural traits of the constructions
MDS analysis of constructional similarity

• García Macías (2016) selected 360 constructions from 101 languages, expressing thetic meanings of different kinds (existential, presentation, hot news, weather, physical sensation), miratives and exclamatives

• He created a matrix of constructions coded with respect to shared morphosyntactic properties (e.g. defective verb, specially marked subject, overt coding of function, etc.)
The semantic map method is that it allows us to deal with instances that are better treated as exceptions, as it is usually the case with constructions that appear isolated in the map (see Croft and Poole 2008).

As can be noted, Figure 15 shows a consistent form-function mapping. As in the first MDS analysis, the information on functions was not included in the analysis but added a posteriori to the spatial map. The consistency of the form-function mapping of course indicates that the functions tend to be distinguished by the same structural properties.

![Figure 15: Two-Dimensional map showing the major concentrations of functions.](image)
Automated algorithms, 2: graph models
Automating “classical” semantic maps (graphs)

• “Classical” semantic maps don’t have fitness metrics applied to them

• Nor do they normally provide a visualization of frequency of co-expression, like higher-dimensional MDS spaces do

• But they can, and should

• And they do, in the Regier et al. (2013) model, based on an algorithm to derive social networks from epidemiological data (Angluin et al. 2010)
The goal, and the utility function

Figure 2. Formalization of the semantic map inference problem. We are given a set of semantic functions (vertices \(V \), shown as small circles), and groupings of these functions into language-specific categories (constraints \(S_i \subseteq V \), each shown by a dashed outline). We seek the minimum set of edges \(E \) (shown as links between vertices) such that each grouping picks out a connected region of the overall graph \(G = (V,E) \).
The utility function: goodness of fit

- You could prune edges with the lowest utility value(s)
The utility function: goodness of fit

Number of edges added by utility score of edges

Edges added

Utility score

+----------------------------------+
<table>
<thead>
<tr>
<th>Utility score</th>
<th>Edges added</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The chart shows the number of edges added by utility score of edges, with the utility score on the x-axis and the number of edges added on the y-axis.
The utility function: goodness of fit

Increase in objective function by utility score of edges

- Utility score
- Increase in objective function

<table>
<thead>
<tr>
<th>Utility score</th>
<th>Increase in objective function</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>
objective fn is currently -436 adding ('R2', 'R32') with score 10
objective fn is currently -426 adding ('R11', 'R40') with score 10
objective fn is currently -416 adding ('R16', 'R24') with score 9
objective fn is currently -407 adding ('R16', 'R31') with score 9
objective fn is currently -398 adding ('R2', 'R14') with score 9
objective fn is currently -389 adding ('R2', 'R19') with score 9
objective fn is currently -380 adding ('R2', 'R54') with score 9
objective fn is currently -371 adding ('R19', 'R47') with score 9
objective fn is currently -362 adding ('R11', 'R59') with score 9
objective fn is currently -353 adding ('R29', 'R59') with score 9
objective fn is currently -344 adding ('R6', 'R38') with score 9
objective fn is currently -335 adding ('R8', 'R59') with score 9
objective fn is currently -326 adding ('R59', 'R65') with score 9
objective fn is currently -317 adding ('R1', 'R23') with score 8
objective fn is currently -309 adding ('R13', 'R36') with score 8
objective fn is currently -301 adding ('R6', 'R49') with score 8
objective fn is currently -293 adding ('R2', 'R60') with score 7
objective fn is currently -286 adding ('R54', 'R67') with score 7
objective fn is currently -279 adding ('R34', 'R59') with score 7
objective fn is currently -272 adding ('R2', 'R71') with score 6
objective fn is currently -266 adding ('R12', 'R52') with score 6
objective fn is currently -260 adding ('R20', 'R56') with score 6
objective fn is currently -254 adding ('R33', 'R57') with score 6
objective fn is currently -248 adding ('R16', 'R53') with score 6
objective fn is currently -242 adding ('R3', 'R28') with score 6
objective fn is currently -236 adding ('R6', 'R64') with score 6
objective fn is currently -230 adding ('R12', 'R20') with score 5
objective fn is currently -225 adding ('R12', 'R35') with score 5
objective fn is currently -220 adding ('R27', 'R41') with score 5
objective fn is currently -215 adding ('R27', 'R45') with score 5
objective fn is currently -210 adding ('R33', 'R37') with score 5
objective fn is currently -205 adding ('R33', 'R41') with score 5
objective fn is currently -200 adding ('R41', 'R56') with score 5
objective fn is currently -195 adding ('R44', 'R52') with score 5
objective fn is currently -190 adding ('R3', 'R35') with score 5
objective fn is currently -185 adding ('R3', 'R68') with score 5
objective fn is currently -180 adding ('R30', 'R54') with score 5
objective fn is currently -175 adding ('R7', 'R56') with score 5
objective fn is currently -170 adding ('R43', 'R59') with score 5
objective fn is currently -160 adding ('R36', 'R59') with score 4
objective fn is currently -156 adding ('R9', 'R22') with score 4
objective fn is currently -152 adding ('R9', 'R33') with score 4
objective fn is currently -148 adding ('R9', 'R70') with score 4
objective fn is currently -144 adding ('R10', 'R21') with score 4
objective fn is currently -140 adding ('R10', 'R57') with score 4
objective fn is currently -136 adding ('R12', 'R25') with score 4
objective fn is currently -132 adding ('R12', 'R61') with score 4
objective fn is currently -128 adding ('R44', 'R50') with score 4
objective fn is currently -124 adding ('R57', 'R63') with score 4
objective fn is currently -120 adding ('R4', 'R55') with score 4
objective fn is currently -116 adding ('R3', 'R8') with score 4
objective fn is currently -112 adding ('R8', 'R11') with score 4
objective fn is currently -108 adding ('R46', 'R52') with score 4
objective fn is currently -104 adding ('R8', 'R45') with score 4
objective fn is currently -100 adding ('R12', 'R66') with score 3
objective fn is currently -97 adding ('R2', 'R18') with score 3
objective fn is currently -94 adding ('R2', 'R62') with score 3
objective fn is currently -91 adding ('R10', 'R55') with score 3
objective fn is currently -88 adding ('R46', 'R55') with score 3
objective fn is currently -85 adding ('R1', 'R5') with score 3
objective fn is currently -82 adding ('R52', 'R58') with score 3
objective fn is currently -79 adding ('R18', 'R28') with score 3
objective fn is currently -76 adding ('R14', 'R70') with score 3
objective fn is currently -73 adding ('R17', 'R65') with score 3
objective fn is currently -70 adding ('R33', 'R69') with score 3
objective fn is currently -67 adding ('R14', 'R47') with score 2
objective fn is currently -65 adding ('R2', 'R11') with score 2
objective fn is currently -63 adding ('R2', 'R39') with score 2
objective fn is currently -61 adding ('R4', 'R15') with score 2
objective fn is currently -59 adding ('R4', 'R42') with score 2
objective fn is currently -57 adding ('R4', 'R51') with score 2
objective fn is currently -55 adding ('R7', 'R34') with score 2
objective fn is currently -53 adding ('R17', 'R52') with score 2
objective fn is currently -51 adding ('R4', 'R18') with score 2
objective fn is currently -49 adding ('R17', 'R18') with score 2
objective fn is currently -47 adding ('R18', 'R57') with score 2
objective fn is currently -45 adding ('R22', 'R30') with score 2
objective fn is currently -43 adding ('R6', 'R7') with score 2
objective fn is currently -41 adding ('R37', 'R43') with score 2
objective fn is currently -37 adding ('R1', 'R13') with score 1
objective fn is currently -36 adding ('R9', 'R20') with score 1
objective fn is currently -35 adding ('R9', 'R37') with score 1
objective fn is currently -34 adding ('R10', 'R27') with score 1
objective fn is currently -33 adding ('R33', 'R70') with score 1
objective fn is currently -32 adding ('R41', 'R45') with score 1
objective fn is currently -31 adding ('R44', 'R56') with score 1
objective fn is currently -30 adding ('R30', 'R69') with score 1
objective fn is currently -29 adding ('R2', 'R26') with score 1
objective fn is currently -28 adding ('R2', 'R69') with score 1
objective fn is currently -27 adding ('R11', 'R18') with score 1
objective fn is currently -26 adding ('R1', 'R35') with score 1
objective fn is currently -25 adding ('R7', 'R65') with score 1
objective fn is currently -24 adding ('R7', 'R68') with score 1
objective fn is currently -23 adding ('R23', 'R65') with score 1
objective fn is currently -22 adding ('R29', 'R43') with score 1
objective fn is currently -21 adding ('R38', 'R49') with score 1
objective fn is currently -20 adding ('R2', 'R68') with score 1
objective fn is currently -19 adding ('R7', 'R15') with score 1
objective fn is currently -18 adding ('R7', 'R26') with score 1
objective fn is currently -17 adding ('R44', 'R58') with score 1
objective fn is currently -16 adding ('R6', 'R17') with score 1
objective fn is currently -15 adding ('R14', 'R61') with score 1
objective fn is currently -14 adding ('R6', 'R26') with score 1
objective fn is currently -13 adding ('R2', 'R3') with score 1
objective fn is currently -12 adding ('R6', 'R48') with score 1
objective fn is currently -11 adding ('R6', 'R25') with score 1
objective fn is currently -10 adding ('R1', 'R43') with score 1
objective fn is currently -9 adding ('R7', 'R14') with score 1
objective fn is currently -8 adding ('R7', 'R36') with score 1
objective fn is currently -7 adding ('R2', 'R15') with score 1
objective fn is currently -6 adding ('R9', 'R51') with score 1
objective fn is currently -5 adding ('R6', 'R15') with score 1
objective fn is currently -4 adding ('R3', 'R4') with score 1
objective fn is currently -3 adding ('R3', 'R53') with score 1
objective fn is currently -2 adding ('R42', 'R44') with score 1
objective fn is currently -1 adding ('R6', 'R44') with score 1

The utility function: visualizing frequency

- Edges could have thickness based on their utility score.
Which models?
Graph models and Euclidean models

- The “classical” graph model and the MDS Euclidean model are both legitimate visualizations.
- The graph model is more useful when there are a small number of nodes (concepts) being compared.
- The Euclidean model is more useful when there are a medium to large number of nodes being compared.
Graph models and Euclidean models

• The graph model assumes a discrete underlying conceptual space, while the Euclidean spatial model represents a continuous underlying conceptual space.

• The graph model cannot be interpreted in terms of “dimensions”; the two-dimensional visual display of the graph is just one of convenience (e.g. minimizing the crossing of edges).

• The Euclidean model’s dimensions can (and should) be interpreted.
MDS and similar models

• MDS is one of a family of multivariate analyses
• It is an unsupervised distance model
• Unsupervised = the categories or groupings are not specified in advance
• Distance = represents similarity directly. In this respect, it differs from eigenanalysis methods (principal components analysis, factor analysis, correspondence analysis)
MDS and similar models

• Eigenanalysis converts the matrix of data to another matrix of the same dimensionality such that
 ✦ each dimension is uncorrelated with every other dimension
 ✦ the first dimension accounts for the most variance in the data, the second for the next most variance, and so on

• This has consequences for interpreting the typically two-dimensional visualizations
MDS and similar models

- An MDS spatial model represents all the variance in the data in the displayed dimensions, while an eigenanalysis represents only a subset of the variance.

- In an MDS spatial model is a true Euclidean spatial representation; an eigenanalysis is a visual representation of the variance in the first two principal components.
MDS and similar models

• In an MDS spatial model, all distances are interpretable. Hence the analysis is invariant under translation and rotation.

• In an eigenanalysis, each dimension must be interpreted separately:

It is customary to summarize the row and column coordinates in a single plot. However, it is important to remember that in such plots, you can only interpret the distances between row points, and the distances between column points, but not the distances between row points and column points.

(http://www.statsoft.com/Textbook/Correspondence-Analysis/, accessed 7 June 2018)
Resources

• Multidimensional scaling:
 https://github.com/jaytimm/MDS_for_Linguists
 (NB: the code at my website now gives wrong results; the user guide that is there is still mostly good but will be updated)

• Graph structure:
 http://lclab.berkeley.edu/regier/semantic-maps/