LExical DIAchronic SEmantic MAps (Le Diasema) From simple networks to mixed multi-edge graphs

Thanasis Georgakopoulos & Stéphane Polis (ULiège / F.R.S.-FNRS)

28.06.2018 University of Liège

➤ Inferring (classical) semantic maps from large-scale polysemy data

- Basic principle
- Plotting weighted maps
- o Graphs vs feature projection (MDS, t-SNE, etc.)

Inferring (classical) semantic maps from large-scale polysemy data

adough

- o Basic principle
- o Plotting weighted maps
- o Graphs vs feature projection (MDS, t-SNE, etc.)
- Le Diasema (Lexical Diachronic Semantic Maps)
 - Focus on the lexicon and diachrony

Inferring (classical) semantic maps from large-scale polysemy data

edough

- Basic principle
- o Plotting weighted maps
- o Graphs vs feature projection (MDS, t-SNE, etc.)
- Le Diasema (Lexical Diachronic Semantic Maps)
 - Focus on the lexicon and diachrony
- \blacktriangleright A protocol for diachronic maps
 - o Plotting,
 - o dynamicizing,
 - o and enriching a map of time-related meanings

Inferring (classical) semantic maps from large-scale polysemy data

- Basic principle
- o Plotting weighted maps
- o Graphs vs feature projection (MDS, t-SNE, etc.)
- Le Diasema (Lexical Diachronic Semantic Maps)
 - Focus on the lexicon and diachrony
- ➢ A protocol for diachronic maps
 - o Plotting,
 - o dynamicizing,
 - o and enriching a map of time-related meanings

From simple networks to mixed multi-edge graphs

"ideally (...) it should be possible to generate semantic maps automatically on the basis of a given set of data" (Narrog & Ito 2007: 280)

Limitation of the semantic map method: practically, it is impossible to handle large-scale crosslinguistic datasets manually

> "not mathematically well-defined or computationally tractable, making it impossible to use with large and highly variable crosslinguistic datasets"

(Croft & Poole 2008: 1)

Regier, Khetarpal, and Majid showed that the semantic map inference problem is "formally identical to another problem that superficially appears unrelated: inferring a social network from outbreaks of disease in a population" (Regier *et al.* 2013: 91)

- What's the idea?
 - Let's consider a group of social agents (represented by the nodes of a potential graph)

- What's the idea?
 - If one observes the same disease for five of these agents (technically called a constraint on the nodes of the graph)

- What's the idea?
 - One can postulate that all the agents met, so that all the nodes of the graph are connected (10 edges between the 5 nodes)

- What's the idea?
 - This is neither a very likely, nor a very economic explanation

- What's the idea?
 - But this is precisely what a colexification network does

- What's the idea?
 - The goal would be to find a more economical solution and to have all the social agents connected with as few edges as possible accounting for all the observations

• How does it transfer to semantic maps?

- How does it transfer to semantic maps?
 - Nodes are meanings

- How does it transfer to semantic maps?
 - Nodes are meanings
 - Constraints are polysemic items (connectivity hypothesis)

- How does it transfer to semantic maps?
 - Nodes are meanings
 - Constraints are polysemic items (connectivity hypothesis)
 - One connects the nodes economically based on these constraints

- How does it transfer to semantic maps?
 - Nodes are meanings
 - Constraints are polysemic items (connectivity hypothesis)
 - One connects the nodes economically based on these constraints, starting with the edge(s) that accounts for the most frequent constraint(s)

- How does it transfer to semantic maps?
 - Nodes are meanings
 - Constraints are polysemic items (connectivity hypothesis)
 - One connects the nodes economically based on these constraints, starting with the edge(s) that accounts for the most frequent constraint(s), and then going down the scale

- How does it transfer to semantic maps?
 - Nodes are meanings
 - Constraints are polysemic items (connectivity hypothesis)
 - One connects the nodes economically based on these constraints, starting with the edge(s) that accounts for the most frequent constraints(s), and then going down the scale

- How does it transfer to semantic maps?
 - Nodes are meanings
 - Constraints are polysemic items (connectivity hypothesis)
 - One connects the nodes economically based on these constraints, starting with the edge(s) that accounts for the most frequent constraint(s), and then going down the scale

- How does it transfer to semantic maps?
 - Nodes are meanings
 - Constraints are polysemic items (connectivity hypothesis)
 - One connects the nodes economically based on these constraints, starting with the edge(s) that accounts for the most frequent constraint(s), and then going down the scale

- Regier et al. (2013): the approximations produced by the Angluin et al. algorithm are of high quality
 - Tested on the crosslinguistic data of Haspelmath (1997) and Levinson et al. (2003)

Figure. Haspelmath's (1997: 4) original semantic map of the indefinite pronouns functions

INPUT (lexical matrix)

Language	Word	Specific Known	Specific Unknown	Irrealis Non-specific	Question	Conditional	Indirect Negation
		SK	SU	IR	QN	CD	IN
German	"etwas"	1	1	1	1	1	1
German	"irgend"	0	1	1	1	1	1
German	"je"	0	0	0	1	1	1
German	"jeder"	0	0	0	0	0	1
German	"n-"	0	0	0	0	0	0
Dutch	"dan ook"	0	0	1	1	1	1
Dutch	"enig"	0	0	0	1	1	1
Dutch	"iets"	1	1	1	1	1	1
Dutch	"niets"	0	0	0	0	0	0
English	"any"	0	0	0	1	1	1
English	"ever"	0	0	0	1	1	1
English	"no"	0	0	0	0	0	0
English	"some"	1	1	1	1	1	0

INPUT (lexical matrix)

Language	Word	Specific Known	Specific Unknown	Irrealis Non-specific	Question	Conditional	Indirect Negation
		SK	SU	IR	QN	CD	IN
German	"etwas"	1	1	1	1	1	1
German	"irgend"	0	1	1	1	1	1
German	"je"	0	0	0	1	1	1
German	"jeder"	0	0	0	0	0	1
German	"n-"	0	0	0	0	0	0
Dutch	"dan ook"	0	0	1	1	1	1
Dutch	"enig"	0	0	0	1	1	1
Dutch	"iets"	1	1	1	1	1	1
Dutch	"niets"	0	0	0	0	0	0
English	"any"	0	0	0	1	1	1
English	"ever"	0	0	0	1	1	1
English	"no"	0	0	0	0	0	0
English	"some"	1	1	1	1	1	0

ALGORITHM (python script)

MAIN LOOP
objfn = C(G,T)
while (objfn < 0):
print ("objective fn is currently", objfn,)
max_score = 0
choose next edge greedily: the one that increases objfn the most
for e in PossE:
temporarily add e to graph G
G.add_edge(*e)
score = C(G,T) - objfn
G.remove_edge(*e)
if (score > max_score):
max_score - score
max_edge = e

INPUT (lexical matrix)

Weighted semantic maps

- Generate the map with a modified version of the algorithm of Regier et al. (2013)
 - PRINCIPLE: for each edge that is being added between two meanings of the map by the algorithm, check in the lexical matrix how many times this specific polysemy pattern is attested, and increase the weight of the edge accordingly

```
edgeWeight = 0
for sns in sensesTupleList:
    if (max_edge[0] in sns) and (max_edge[1] in sns):
        edgeWeight += 1
G.add_edge(*max_edge,weight=edgeWeight)
```

Weighted semantic maps

- Generate the map with a modified version of the algorithm of Regier et al. (2013)
 - PRINCIPLE: for each edge that is being added between two meanings of the map by the algorithm, check in the lexical matrix how many times this specific polysemy pattern is attested, and increase the weight of the edge accordingly

```
edgeWeight = 0
for sns in sensesTupleList:
    if (max_edge[0] in sns) and (max_edge[1] in sns):
        edgeWeight += 1
G.add_edge(*max_edge,weight=edgeWeight)
```

• Based on the data of Haspelmath (1997), kindly provided by the author, the result between a non-weighted and a weighted semantic map are markedly different

Weighted semantic maps

Weighted semantic maps

Graphs vs feature projections

- ➢ If the data can be turned into a polysemy matrix, the graphs have some advantages over feature projections based on techniques of dimensionality reduction
 - 1. Readability and interpretability

6 t-SNE projection day sun afternoon late rain..noun. obscure clear..plain age darkness moon fog sky night dark .. in .color. weigh well..health west 3 dawn long.time..for.a. old anger before evening quiet..silence swelling put light..kindle..ignite place tesean water east wool reach..arrive platar.field good.fortune..luck whale fur sound..noise loud ear enter threshing.floor guard..sentinel name belt..girdle leaphant..vb. gold winter color meal..a. ashes cry..weep tree thin..in.dimension. clock.htimepiece beget. I of father. squeeze..wring season noon..midday smooth build firewood blue neckpaper go tin..tinplate wood hastencharry month roof wave smell..vb.trans. .citizen..subject mirror oil hang.up helmet warm chisel priceblack burn.bananatree yes..affirmativeat hot way manner son cloud enough disensbeeth flay..skin rigbodsicferest chief.chieftain spring thread bugo average and epart match 700n. hailyrfer 0 lunch read fengae move famine fetalce fever blind know ride rise tired weater.tomorrow skin..hi**sla**lt voidide morning tomorrow lick swaller misfortunghbarluck first grief..sorrow..sadness live..living..life after south shake safanoun. meal.hairustead. down..below shallow empty city..town..piece Sunday whitegain heavy field..foggutivation. acid...sour shade...siladow today baik fire alone..onlyay.before.yesterday near..adv. candle fariante:.noun. leaf cook Monalphetsteath cheek conservations yesterday Т rice earth.ground..soil law blisteam country floor^{sweet} light..in.weight. bright light..in.color. light..noun. often summer -3 drum dinner cover wide..broad immediately earth .. land storm shine grease..fat soon lamp..torch world wind swift..fast..quick early air weather ò -3

3

6

Graphs vs feature projections

- If the data can be turned into a polysemy matrix, then the graphs have significant advantages over feature projections based on techniques of dimensionality reduction
 - 1. Readability and interpretability
 - 2. Visual expressiveness
 - 3. Modifiability
 - 4. Statistical tools
 - Filtering
 - Clustering
 - Visualizing

Le Diasema Objectives: 1) Add directionality to semantic maps of content words

Le Diasema

Objectives: 2) Plot *diachronic* and *weighted* semantic maps automatically

• Diachronic semantic maps are much more informative than regular semantic maps, because they visually provide information about possible pathways of change

"[T]he best synchronic semantic map is a diachronic one" (van der Auwera 2008: 43)

• Weighted semantic maps are much more informative than regular semantic maps, because they visually provide information about the frequency of polysemy patterns

Le Diasema

Objectives: 3) Provide information about the *cognitive* and *cultural* factors behind the development of the various meanings

Le Diasema

Today's talk

- 1. Add directionality to semantic maps of content words
- 2. Plot diachronic and weighted semantic maps
- 3. Provide information about the cognitive and cultural factors behind the development of the various meanings

We present:

• A protocol to construct lexical diachronic semantic maps based on a case-study:

The semantic extension of time-related lexeme

• A way to visualize and analyze the results

- 1. Choose the concepts / domains
- 2. Identify cross-linguistic polysemy patterns
- 3. Build a lexical matrix
- 4. Plot a weighted semantic map
- 5. Remove infrequent polysemy patterns
- 6. Select languages with diachronic data
- 7. Ensure comparability
- 8. Add diachronic information
- 9. Visualize the complete result

Choice of concepts

- For the purpose of universality and stability, we chose the entries for timerelated concepts in the Swadesh 200-word list (Swadesh 1952: 456-457)
 - DAY/DAYTIME

day

- NIGHT
- YEAR

THE TEST VOCABULARY

The lexical test list used for studying rate of change consisted of 215 items of meaning expressed for convenience by English words. In some cases, where the English word is ambiguous or where the English meaning is too broad to be easily matched in other languages, it is necessary to specify which meaning is intended, and this is done by means of parenthetic additions. If it is understood that normal everyday meanings rather than figurative or specialized usages are to be thought of, complicated notes are not necessary. The list, minus 15 items recommended for omission and with one other change, is as follows :

all (of a number), and, animal, ashes, at, back (person's), bad (deleterious or unsuitable), bark (of tree), because, belly, berry (or fruit), big, bird, to bite, black, blood, to blow (of wind), bone, breathe, to burn (intrans.).

child (young person rather than as relationship term), cloud, cold (of weather), to come, to count, to cut, day (opposite of night rather than time measure), to die, to dig, dirty, dog, to drink, dry (substance), dull (knife), dust, ear, earth (soil), to eat, egg, eye.

to fall (drop rather than topple), far, fat (organic substance), father, to feat, feather (larger feathers rather than down), few, to fight, fire, fish, five, to float, to flow, flower, to fly, log, foot, four, to freeze, to give.

good, grass, green, guts, hair, hand, he, head, to hear, heart, heavy, here, to hit, to hold (in hand), how, to hunt (game), husband. I, ice, if. in, to kill, to know (facts), lake, to laugh, leaf, left (hand), leg, to lie (on side), to live, long, louse, man (male human), many, mar (Hesh), mother, mountain, mouth, name, narrow, near, neck, new, night, nose, not, old, one,

narrow, near, neck, new, night nose, not, old, one, other, person, to play, to pull, to push, to rain, red, right (correct), right (hand), river, road (or trail), root, rope, rotten (especially log), to rub, salt, sand, to say, to scratch (as with fingernails to relieve itch), sea (ocean), to see, seed, to sew, sharp (as knife), short, to sing, to sit, skin (person's), sky, to sleep, small.

to smell (perceive odor), smoke (of fire), smooth, stake, snow, some, to split, to split, to squeeze, to stab (or stick), to stand, star, stick (of wood), stone, straight, to suck, sun, to swell, to swim, tail.

that, there, they, thick, thin, to think, this, thou, three, to throw, to tie, tongue, tooth (front rather than molar), tree, to turn (change one's direction), two, to vomit, to walk, warm (of weather), to wash, water, we, wet, what? when? where? white, who?

wide, wife, wind, wing, to wipe, with (accompanying), woman, woods, worm, ye, year, yellow.

night

year

filth Choice of concepts hole battom homeland field EARTH/SO debris dust_storm floor • We chose the entries for timepollen ground DUST cloud of dust related concepts also for the burned_object/ guntire mold powder sawdust burning_object conflagration clay al sake of comparability gunpowder flame feve ASH(ES) blaze countrymud electricity 1irewood (see, e.g., Youn et al. 2016) passion embers soot anger cigarette gravel heat hearth SMOKE fumes burning mistclan sandbank match sandy area household world meteor lamp beach sleep evening tobacco life NIGHT dawn darkness haze afternoon last_night luck light lodestar DAY/DAYTIME CLOUD(S) heaven fate planet STAR clock celebrity asterisk thirst heavenly_body starfish smell ceiling noon 24hr_period sunlight birthday date Christmas YEAR heat of sun high season topabove time kidney space winter Pleiades long_period_of_timesummer weather atmosphere C mood month gal divinity cold storm MOO breath moonlight satellite der breeze direction bodily_gases lunar month menses chambered nautilus climate menstruation_period

On the universal structure of human lexical semantics

Hyejin Youn^{«,b,c,1}, Logan Sutton^d, Eric Smith^{c,}«, Cristopher Moore^c, Jon F. Wilkins^{c,f}, Ian Maddieson^{g,h}, William Croft^g, and Tanmoy Bhattacharya^{c,i,1}

Identify cross-linguistic polysemy patterns

- N of lgs: 221
- N of lg families: 64
- N of concepts: 1280

• Identify in CLICS (List et al. 2014) the main polysemy patterns attested for these three meanings [16 meanings]

Identify cross-linguistic polysemy patterns

- Identify in CLICS (List et al. 2014) the main polysemy patterns attested for these three meanings [16 meanings]
 - **DAY/DAYTIME**: CLOCK/TIMEPIECE, HOUR, SEASON, SUN, TIME, WEATHER
 - NIGHT: DARK (in color), DARKNESS, BLACK, OBSCURE
 - **YEAR**: AGE, SPRING, SUMMER

Identify cross-linguistic polysemy patterns

• All the colexification patterns attested for these 16 meanings were gathered from the CLICs source files (<u>http://clics.lingpy.org/download.php</u>):

➡ 381 colexification patterns

4	A	B	C
119	day	afternoon	hau_std:rana//ket_std:i?//plj_std:piidi//rus_std:den//tli_std:yakyee
120	day	again	kha_std:sngi
121	day	age	gui_std:'ara//yad_std:hnda
22	day	anger	tzz_std:k'ak'al
23	day	bright	tzz_std:k'ak'al
24	day	clock, timepiece	gue_std:wuringarn//sei_std:šä?
25	day	cloud	haw_std:ao
26	day	country	cbr_std:niti//shp_std:niti
127	day	dawn	haw_std:ao//waw_std:enmari
.28	day	doubt	haw_std:lä
29	day	earth, land	cag_std:nafu//haw_std:ao//mri_std:ao//tzz_std:osil
	day	east	tob_std:na?a?k
	day	fever	tzz_std:k'ak'al
	day	fin (dorsal)	haw_std:lä
	day	fire	jpn_std:hi
34	day	go	ote_std:pa//oym_std:aa
35	day	go away, depart	ote_std:pa
.36	day	hour	sap_Standard:aknim//shb_std:them
.37	day	lamp, torch	ito_std:uwayo
38	day	lick	cmn_std:tian
.39	day	light (in color)	mri_std:ao
	day	light (noun)	con_std:a?ta//crt_std:xloma//haw_std:ao//hdn_Northern:%kat%káa//ito_std:uwayo//mz
41	day	live, living, life	shp_std:niti

Convert the polysemy patterns into a lexical matrix

		Languages	Forms		Mea	nings		
Tmap = [Tsenses] for t in Tclean:		A	В	C	D	E	F	
<pre>split_langWord = t[2].split('//')</pre>	2	yad_std	hnda	age 1	acid, sour	city, town	day	1
<pre>for couple in split_langWord:</pre>	3	vec_std	edat	1	0	0	,)	o
<pre>langWord = couple.split(':') line</pre>		jpn_std	toshi	1	0	1		0
line = [langWord[0], langWord[1]] for i in range (2,len(Tsenses)):		gui_std	'ara	1	0	0		1
line.append('0')	-	nog_std mri_std	йуз pakeke	1	0)	0
line[Tsenses.index(t[0])] = '1'		pbb_std	hi?ph	1	0) C)	0
line[Tsenses.index(t[1])] = '1'	9	khv_Khvarsh	замана	1	0	0 0)	0
Tmap.append(line)				1 1]

1 when a meaning is attested for one form

Python script α

Lexical matrix

Remove infrequent polysemy patterns

Semantic map of time-related senses (colexification patterns attested in 2⁺ languages)

Two connected sub-networks

- NIGHT/DARKNESS/DARK
- DAY/TIME/AGE/YEAR

Remove infrequent polysemy patterns

Remove infrequent polysemy patterns

• In order to investigate directionality of change, 13 meanings that are connected on this map in at least 8 different languages were kept

Select languages with diachronic data

Select languages with diachronic data

• The Catalogue of Semantic Shifts in the Languages of the World (Zalizniak, 2006; Zalizniak et al., 2012; <u>http://semshifts.iling-ran.ru/</u>)

(1) Meanings: tree (source)—forest (target) (ID: 600); Form: dar; Language: Aghul; Realization Type: synchronic polysemy

- The Catalogue of Semantic Shifts in the Languages of the World (Zalizniak, 2006; Zalizniak et al., 2012; <u>http://semshifts.iling-ran.ru/</u>)
 - (1) Meanings: tree (source)—forest (target) (ID: 600); Form: dar; Language: Aghul; Realization Type: synchronic polysemy
 - (2) Meanings: doll (source)—nymph, chrysalis (target) (ID: 927); Form: kukla; Language pair: Russian —Czech; Realization Type: Cognate

- The Catalogue of Semantic Shifts in the Languages of the World (Zalizniak, 2006; Zalizniak et al., 2012; <u>http://semshifts.iling-ran.ru/</u>)
 - (1) Meanings: tree (source)—forest (target) (ID: 600); Form: dar; Language: Aghul; Realization Type: synchronic polysemy
 - (2) Meanings: doll (source)—nymph, chrysalis (target) (ID: 927); Form: kukla; Language pair: Russian —Czech; Realization Type: Cognate
 - (3) Meanings: arc (source) → rainbow (target) (ID: 393); Form: Bogen → Regenbogen; Language: German; Realization Type: Morphological derivation

- The Catalogue of Semantic Shifts in the Languages of the World (Zalizniak, 2006; Zalizniak et al., 2012; <u>http://semshifts.iling-ran.ru/</u>)
 - (1) Meanings: tree (source)—forest (target) (ID: 600); Form: dar; Language: Aghul; Realization Type: synchronic polysemy
 - (2) Meanings: doll (source)—nymph, chrysalis (target) (ID: 927); Form: kukla; Language pair: Russian —Czech; Realization Type: Cognate
 - (3) Meanings: arc (source) → rainbow (target) (ID: 393); Form: Bogen → Regenbogen; Language: German; Realization Type: Morphological derivation
 - (4) Meanings: to count (source) → speech (target) (ID: 11); Forms: ratio → Rede; Languages: Latin (donor) → German (target); Realization Type: Borrowing

- The Catalogue of Semantic Shifts in the Languages of the World (Zalizniak, 2006; Zalizniak et al., 2012; <u>http://semshifts.iling-ran.ru/</u>)
 - (1) Meanings: tree (source)—forest (target) (ID: 600); Form: dar; Language: Aghul; Realization Type: synchronic polysemy
 - (2) Meanings: doll (source)—nymph, chrysalis (target) (ID: 927); Form: kukla; Language pair: Russian —Czech; Realization Type: Cognate
 - (3) Meanings: arc (source) → rainbow (target) (ID: 393); Form: Bogen → Regenbogen; Language: German; Realization Type: Morphological derivation
 - (4) Meanings: to count (source) → speech (target) (ID: 11); Forms: ratio → Rede; Languages: Latin (donor) → German (target); Realization Type: Borrowing
 - (5) Meanings: to catch (source) \rightarrow to hunt (target) (ID: 415); Forms: capto \rightarrow cacciare; Languages: Latin \rightarrow Italian; Realization Type: Diachronic semantic evolution

Select languages with diachronic data

DatSemShifts							
Home	Semant	tic shifts 🝷	Meanings Langua	iges Particip	ants Publication	s Contact us Log in	
ID	Source	Direction	Target	Status	Contributed by	Accepted realization	Show
53	time	-	weather	Accepted	DG	4	Show
109	time	_	opportunity	Accepted	IG	2	Show
395	time	_	hour	Accepted	DG	2	Show
406	time	_	24 hours	Suspended	DG	0	Show
795	time	\rightarrow	one time, once	New	MB	0	Show
1446	time	\rightarrow	journal, magazine	Accepted	IG	3	Show

Select languages with diachronic data

DatSemShifts							
Home	Semant	ic shifts +	Meanings Langua	ges Particip	ants Publication	s Contact us Log in	
ID	Source	Direction	Target	Status	Contributed by	Accepted realization	Show
53	time	_	weather	Accepted	DG	4	Show
109	time	_	opportunity	Accepted	IG	2	Show
395	time	_	hour	Accepted	DG	2	Show
406	time	_	24 hours	Suspended	DG	0	Show
795	time	\rightarrow	one time, once	New	MB	0	Show
1446	time	\rightarrow	journal, magazine	Accepted	IG	3	Show

Select languages with diachronic data

ID	Source	Direction	Target	Status	Contribu		
	000100	Dirootion	laigot	otatao	C ontailorat		
1446	time	\rightarrow	journal, magazine	Accepted	IG		
0							
Comments:		да могут быть кальки					
		da moi yi obiib ka/ibk/					
Confirmed by 3 Guru(s)							
Derivation: German Zeit \rightarrow Zeitung, Zeitschrift 'newspaper, journal'							
Derivation: Karaim <i>Baxt</i> 'time' \rightarrow <i>Baxtлыx</i> 'journal'							
Polysemy:	Polysemy: Polish czas 'time' – 'journal'						

- The Catalogue of Semantic Shifts in the Languages of the World (Zalizniak, 2006; Zalizniak et al., 2012; <u>http://semshifts.iling-ran.ru/</u>)
 - Relies predominantly on synchronic polysemy
 - Mirrors the polysemous view of semantic change (see Sweetser 1990: 9; Evans, 1992: 476; Geerarts, 1997: 6; Wilkins, 1996: 269-271; Evans & Wilkins, 2000: 549ff)
- We share this view, but:
 - Our focus: diachronic semantic developments of individual lexemes in the course of their semantic history
 - Advantage: theorize about semantic change based on actual data
 - Disadvantage: not many languages with significant diachronic data!

- Ancient Greek (8th c. BC 4th c. AD)
 - Perseus digital library (<u>http://www.perseus.tufts.edu/hopper/</u>), TLG (<u>http://stephanus.tlg.uci.edu</u>)
 - Cunliffe (A lexicon of the Homeric Dialect), LSJ
 - Dictionary of Selected Synonyms in the Principal Indo-European Languages (Buck, 1949)
 - Etymological dictionaries (e.g., Beekes, 2010)
- Ancient Egyptian (26th c. BC 10th c. AD)
 - Corpora
 - Thesaurus Linguae Aegyptiae (<u>http://aaew.bbaw.de/tla/</u>)
 - Ramses Online (<u>http://ramses.ulg.ac.be</u>)
 - Lexical resources (Dictionaries and Coptic etymological dictionaries)

Ensure comparability

- Provide definitions for the 13 concepts
 - Use Concepticon (<u>http://concepticon.clld.org</u>)
 - (a) the concept sets are given a unique definition
 - (b) CLICS is one of the lists included in Conception*

CONCEPT	DEFINITION IN CONCEPTICON	ADJUSTED DEFINITION
AGE	The period of time that a person, animal or plant has lived or is expected to live.	
DAY/DAYTIME	The period between sunrise and sunset where one enjoys daylight.	
SUN	The particular star at the centre of our solar system, from which the Earth gets light and heat.	The star that is the source of light and heat for the planets in the solar system (Wordnet)

Table. Definitions of concepts (incomplete)

* The elicitation of the data in CLICS precedes the addition of the definitions in Conception

Ensure comparability

• Proceed onomasiologically

Concept	DEFINITION IN CONCEPTICON	ADJUSTED DEFINITION	Lexeme in AEG	Lexeme in AG
	The period of time that a person,		j3k.t	hēlikía
	animal or plant has lived or is		šms	
AGE	expected to live		snhy.t	
			<i>j3w</i> (old age)	
			<i>jz.t</i> (age, decline)	
	The period between sunrise and		hrw	êmar
DAV /DAV/DA	sunset where one enjoys daylight.		ḥdַ.t	ēốs
DAY/DAYTIME			r (nb)	
			sw (calenderic)	
	The particular star at the centre of	The star that is the	r ^c w	hēlios or ēélios
	our solar system, from which the	source of light and	ŠW	
SUN	Earth gets light and heat.	heat for the planets in	jtn	
		the solar system	etc.	
		(Wordnet)		

Table. Definitions of concepts and lexemes expressing the concepts

Ensure comparability

- Proceed onomasiologically
- Proceed semasiologically
 - List the different meanings of the lexemes identified
 - Dictionary-based
 - Other available resources
 - Corpus queries
 - Collect at least two text examples of each of the meanings

Add diachronic information

- Include directionality of change
 - Add arrows to the existing synchronic map
 - Enrich the existing synchronic map with additional nodes and add arrows (if necessary)
- Visualize the (complex) results

+ Semantic analysis

The semantic extension of time-related lexemes

Add arrows to the existing synchronic map

- The diachronic material allows us to add diachronic information (graphically, oriented edges) between frequent colexification patterns
 - SEASON-TIME-HOUR

The semantic extension of time-related lexemes

Ancient Greek: hốra 'season'

- Proto Indo-European root **Hieh,-r-, Hioh,-r-* 'year' (Beekes, 2010: 1681)
- (1) hóssá te phúlla kaì ánthea
 REL.NOM.PL.N PTC leaf:ACC.PL.N CONJ flower:ACC.PL.N
 gígnetai hốrēi
 become:PRS.3SG season:DAT.SG.F
 'as are the leaves and the flowers in their season' (Homer, Iliad 2.468)

hôrai (seasons):

- spring (éaros hốrē 'spring season'; Iliad 6.148),
- winter (hőrēi kheimeríēi 'in wintry season'; Odyssey 5.485)
- summer/autumn (hőrai epibríseian 'in rainy seasons'; Odyssey 24.344)

The semantic extension of time-related lexemes

Ancient Greek: hốra 'time/moment'

Approx. 8th c. BC

(2)	<i>óphra</i> CONJ	<i>Poseidáōni</i> Poseidon:DAT.SG.M	<i>kaì</i> CONJ	<i>állois</i> other:DAT	.PL	<i>athanátoisin</i> immortal:DAT.PL
	<i>speisantes</i> pour.libat	ion:PART.AOR.NOM.PL.M	<i>koito</i> 1 bed:	<i>io</i> GEN.SG.M		<i>ṓmetha:</i> k.of:PRS.1PL.SUBJ.M/P

toîo gàr hốrē DEM.GEN.SG ^{PTC} **time:NOM.SG.F**

'that when we have poured libations to Poseidon and the other immortals, we may bethink us of sleep; for it is the **time** thereto' (Homer, *Odyssey* 3.333-334)

Ancient Greek: hốra 'time/moment'

5th c. BC

(3) kat' makrá moi neîsthai amaksitón: go:PRS.INF.M/P highway:ACC.SG.M long:NOM.SG.F 1SG.DAT DIR.INFR hốra gàr sunáptei PTC join.together:PRS.3SG time:NOM.SG.F 'Returning home by highway is too long; for time is approaching'

(Pindar, Pythian 4.247)

Ancient Greek: $h \delta r a$ 'time/moment' \Rightarrow 'hour'

Approx. 1st c. AD

- (4)oukhìdốdekahôraìeisintêshēméras;NEGtwelvehour:NOM.PL.Fbe.PRS.3PLART.GEN.SG.Fday:GEN.SG.F'Aren't there twelve hours of daylight?' (New Testament, John 11.9.2)
 - \blacktriangleright *hôra* conveyed the meaning 'hour' as early as the 4th c. BC

Add arrows to the existing synchronic map

Metonymy: due to the correlation between the canonical time periods and the time these take to unfold

Add arrows to the existing synchronic map

- The diachronic material allows us to add diachronic information (graphically, oriented edges) between frequent colexification patterns
 - SEASON-TIME-HOUR

Add arrows to the existing synchronic map

- The diachronic material allows us to add diachronic information (graphically, oriented edges) between frequent colexification patterns
 - TIME-AGE-YEAR-SEASON: Reintegrating edges

Add arrows to the existing synchronic map

- The diachronic material allows us to add diachronic information (graphically, oriented edges) between frequent colexification patterns
 - TIME-AGE-YEAR-SEASON: Reintegrating edges

(5)	dôke	dé	m'	ekdeíras	askòn		
	give:AOR.3SG	PTC	1sg.acc	strip.off:PTCP.AOR.NOM.SG.M	skin:ACC.SG.M		
	<i>boòs</i> ox:GEN.SG.M	enneö nine.	<i>roio</i> , years.old:0	EN.SG.M			

'He gave me a wallet, made of the hide of an ox **nine years old**, which he flayed' (Homer, *Odyssey* 10.19)

Add arrows to the existing synchronic map

- The diachronic material allows us to add diachronic information (graphically, oriented edges) between frequent colexification patterns
 - TIME-AGE-YEAR-SEASON: Reintegrating edges

Add arrows to the existing synchronic map

- The diachronic material allows us to add diachronic information (graphically, oriented edges) between frequent colexification patterns
 - SUN-DAY

Add arrows to the existing synchronic map

- The diachronic material allows us to add diachronic information (graphically, oriented edges) between frequent colexification patterns
 - SUN-DAY
- (6) pând'êmarpherómēn,hámad'whole:ACC.SG.NPTCday:ACC.SG.Ncarry:IMPF.1PL.M/PADVPTC

ēelíōikatadúntikáppesonenLḗmnōisun:DAT.SG.Mset:PTCP.AOR.DAT.SG.Mfall:AOR.1PLinLemnos:DAT.SG'the whole day long I was carried headlong, and at sunset I fell in Lemnos'
(Homer, lliad 1.592-593)inLemnos'

Approx. 8th c. BC

Add arrows to the existing synchronic map

- The diachronic material allows us to add diachronic information (graphically, oriented edges) between frequent colexification patterns
 - SUN-DAY

(7)	,	egṓ 1sg.nom	te PTC	sé: 2sG.ACC	<i>hēlíous</i> sun:ACC.P	dè L.M PTC	5 th c. BC
	<i>muríous</i> infinite:ACC.PL.N	<i>mólis</i> M ADV	<i>dielthi</i> pass:F	ồn PTCP.AOR.N	OM.SG.M	<i>ēisthomēn</i> perceive:AOR	.1sg.mid
	<i>tà</i> ART.ACC.PL.N	<i>tês</i> ART.GEI	N.SG.F	<i>theoû</i> god:GEN.	SG		

'You have me, and I have you; although it was hard to live through so many **days**, I now understand the actions of the goddess.' (Euripides, *Helen* 652-653)

Add arrows to the existing synchronic map

- The diachronic material allows us to add diachronic information (graphically, oriented edges) between frequent colexification patterns
 - SUN-DAY

'(You should pray god non-stop,) so that he praise you every day .' (P. Chester Beatty IV, v° 4,10)

Add arrows to the existing synchronic map

- The diachronic material allows us to add diachronic information (graphically, oriented edges) between frequent colexification patterns
 - SUN-DAY

• SUN-DAY

Snapshot from Youn *et al.* (2016) showing polysemy patterns of celestial objects and natural settings

Enriching the map

- The material allows us to add new polysemy patterns, and to provide a diachronic account
 - SUMMER:

86

Enriching the map

• SUMMER

There are 17 links involving the concept "summer": ?								
Concept	IDS-Key	Occurrences	Families	Languages	Network		Forms	
year	14.73	233	10	16	COM S	UB	FORMS	
age	14.12	257	2	3	COM S	UB	FORMS	
bow	20.24	231	2	2	COM S	UB	FORMS	
spring	14.75	174	2	3	COM S	UB	FORMS	
autumn	14.77	167	1	1	COM S	UB	FORMS	
cave	1.28	256	1	1	COM S	UB	FORMS	
cousin	2.55	346	1	1	COM S	UB	FORMS	
hang up	9.341	280	1	1	COM S	UB	FORMS	
hot	15.85	303	1	1	COM S	UB	FORMS	
put	12.12	306	1	1	COM S	UB	FORMS	
rain (noun)	1.75	257	1	1	COM S	UB	FORMS	
reach, arrive	10.55	329	1	1	COM S	UB	FORMS	
rise	10.21	334	1	1	COM S	UB	FORMS	
season	14.78	193	1	1	COM S	UB	FORMS	
sun	1.52	245	1	1	COM S	UB	FORMS	
wall	7.27	239	1	1	COM S	UB	FORMS	
wine	5.92	162	1	1	COM S	UB	FORMS	

(http://clics.lingpy.org/all.php?gloss=summer)

Enriching the map

• Ancient Greek: *théros* 'summer' ⇒ 'harvest'*

epèn (9) élthēisi théros tethaluîá autàr PTC when come:AOR.SUBJ.3SG thrive:PART.PERF.NOM.SG.F summer:NOM.SG.M opốrē ť Approx. PTC autumn:NOM.SG.F 8th c. BC 'But when **summer** comes and rich autumn' (Homer, *Odyssey* 11.192) (10)anèr édoksen tallótrion kâit' eînai, ADV another:GEN.SG man:NOM.SG.M seem:AOR.3SG be.INF amôn théros reap.corn:PTCP.PRS.NOM.SG.M summer:ACC.SG.N 5th c. BC 'he has only made himself a name by reaping another's harvest' (Aristophanes, *Knights* 392)

*In Homer, karpós is

used for 'harvest'

Enriching the map

- The material allows us to add new polysemy patterns and to provide a diachronic account
 - SUMMER

Enriching the map

- The material allows us to add new polysemy patterns and to provide a diachronic account
 - SEASON

Enriching the map

SEASON \rightarrow YOUTH •

(11)	eph'	hoîs	proséke	i	semnúsesthai	tền		pólin,
	SUPR	REL.DAT.PL.M	belong	PRS.3SG	exalt:INF.M/P	ART.AC	CC.SG.F	city:ACC.SG.F
eàn CON	<i>kállei</i> J beau	ity:DAT.SG.N		วั่ <i>rai</i> Duth:DAT	<i>dienegké</i> .SG.F differ:AC	óntes DR.PTCP.NO	M.PL.M	
,	<i>ēksōsí</i> .ze:3aor	<i>tinas</i> R.SUBJ INDEF	F.ACC.PL.F	kaì CONJ	<i>perimákhētoi</i> fought.for:N		<i>eks</i> ELAT	
erōte love	<i>os</i> e:gen.sg	<i>génōntai</i> .M be.AOR.S	GUBJ.3PL.MI	D				

'of whom the city may well be proud, if by their surpassing beauty and **youthful charm** they infatuate one person or another' (Aeschines, Against Timarchus 1.134)

Enriching the map

- The material allows us to add new polysemy patterns and to provide a diachronic account
 - SEASON

Language-specific colexification patterns

- The material allows us to highlight unexpected pathways of change:
 - From temporal proximity to spatial proximity
- What about the TIME IS SPACE Metaphor?
 - (Cross-linguistically Time to Space transfers are extremely rare; cf. French depuis; Haspelmath 1997)

'A strong rampart around his army, (their shield in the day of fighting)'

Can we infer directionalities automatically?

• Expand the lexical matrix so as to include information about diachrony

Source of constraint	Constraint name	Constraint Time	Sense_1	Sense_2	Sense_3
			Tree	Wood	Forest
Language_1	Word_1	0	1	0	0
Language_1	Word_1	1	1	1	0
Language_2	Word_1	0	1	0	0
Language_2	Word_2	0	0	1	0
Language_2	Word_2	1	0	1	1
Language_3	Word_1	0	1	1	0
Language_3	Word_2	0	0	0	1

• Expand the lexical matrix so as to include information about diachrony

Source of constraint	Constraint name	Constraint Time	Sense_1	Sense_2	Sense_3
			Tree	Wood	Forest
Language_1	Word_1	0	1	0	0
Language_1	Word_1	1	1	1	0
Language_2	Word_1	0	1	0	0
Language_2	Word_2	0	0	1	0
Language_2	Word_2	1	0	1	1
Language_3	Word_1	0	1	1	0
Language_3	Word_2	0	0	0	1
		V			
		liachronic stag	·		
	ind	exed by numb	ers:		
		0, 1, 2, etc.			

• Expand the lexical matrix so as to include information about diachrony

Source of constraint	Constraint name	Constraint Time	Sense_1	Sense_2	Sense_3
			Tree	Wood	Forest
Language_1	Word_1	0	1	0	0
Language_1	Word_1	1	1	1	0
Language_2	Word_1	0	1	0	0
Language_2	Word_2	0	0	1	0
Language_2	Word_2	1	0	1	1
Language_3	Word_1	0	1	1	0
Language_3	Word 2	0	0	0	1

The meaning of a word can change from one stage to another (e.g., Word_2 of Language_2 expresses the meaning Wood during stage 0 and Wood & Forest during stage 1)

- Expand the lexical matrix so as to include information about diachrony
- Generate the graph with the weighted version of the algorithm of Regier et al. (2013)

- Expand the lexical matrix so as to include information about diachrony
- Generate the graph with the weighted version of the algorithm of Regier et al. (2013)
- Enrich the graph with oriented edges (where relevant)
 - PRINCIPLE: for each edge in the graph, if the meaning of node A is attested for one diachronic stage, while the meaning of node B is not, check in the lexical matrix if there is a later diachronic stage of the same language for which this specific word has both meaning A and B (or just meaning B). If this is the case, we can infer a meaning extension from A to B.

	Source of constraint	Constraint name	Constraint Time	Sense_1	Sense_2	Sense_3
				Tree	Wood	Forest
	Language_1	Word_1	0	1	0	0
INPUT	Language_1	Word_1	1	1	1	0
	Language_2	Word_1	0	1	0	0
(diachronic	Language_2	Word_2	0	0	1	0
	Language_2	Word_2	1	0	1	1
lexical matrix)	Language_3	Word_1	0	1	1	0
	Language_3	Word_2	0	0	0	1

Algorithm (python script for inferring oriented edges)

<pre>H = G.to_directed() # convert the graph 'G' into a directed Graph 'H' in order to ex</pre>	
# (i.e., both A -> B and B -> A for all the connected nodes, cru	ucia
# not only A -> B)	
<pre>nx.set_edge_attributes(H, 'type', 'undirected') # set the default value to "undirected"</pre>	for
for u,v,e in H.edges(data=True): # loop over all the edges in the DiGraph 'H'	
for t in T_Full: # look at the metadata and senses for one line	in 1
if t.count(u) == 1 and t.count(v) == 0: # if the meaning of node 'u' in	the
# while the meaning of node 'v'	is

RESULT (dynamic semantic map)

How to plot semantic maps?

Upload the lexical matrix (.xls file)

BeIPD - COFUND

How to plot semantic maps?

Upload the lexical matrix (.xls file)

HR EXCELLENCE IN RESEARCH

BeIPD - COFUND

How to plot semantic maps?

BeIPD - COFUND

Conclusions

Thanks!

s.polis@uliege.be athanasios.georgakopoulos@uliege.be